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ABSTRACT

Several functional and biomedical imaging techniques rely

on determining hemodynamic variables and their changes in

large vascular networks. To do so at micro-vascular reso-

lution requires taking into account the – usually small but

often non-rigid – mechanical deformations of the imaged

vasculature induced by the cardiac pulsation and/or the sub-

jects’body movements. Here, we present two new algorith-

mic approaches, allowing (i) to efficiently and accurately

co-register large sets of such images in a non-rigid manner

using Scale-Invariant Feature Transform (SIFT) keypoints,

and (ii) to extract blood vessels and their diameters based

on blood-flow information using a fast marching algorithm.

These methods were applied to optical imaging data of in-

trinsic signals from awake monkey visual cortex at high

spatiotemporal resolution (30μm, 5ms). The movement of

red blood cells in the sequences could be enhanced by a

Beer-Lambert-based image preprocessing. Our SIFT-based

registration could be directly compared to a rigid registration,

whereas the vessel extraction algorithm was tested by verify-

ing flow conservation in vascular branching points. Finally,

both methods together proved to improve a lot the estimation

of the blood velocity in the vessels.

Index Terms— blood flow, biomedical imaging, image

registration, image enhancement, image segmentation

1. INTRODUCTION

The determination of hemodynamic parameters and their

changes in extended vascular networks (e.g., cortex, retina)

at high spatial resolution is essential for correctly interpreting

both functional and biomedical imaging data. Among those

parameters, imaging blood flow is crucial for understand-

ing both sensory-induced and pathological hemodynamic

responses, as well as for modeling purposes [1]. Moving

All experiments performed according to NIH guidelines

red blood cells (RBCs) can be directly "seen" by optical

imaging at adequate wavelengths [2], allowing to obtain

stationary blood flow values in vascular networks [3]. How-

ever, to achieve a robust, fast and reliable determination of

the small, eventually neuronal activity-evoked, changes in

cerebral blood flow (CBF), some obstacles still have to be

overcome [4]. Among those, there is the need for accurate

inter-frame alignment of the imaged vascular patterns that

move non-rigidly between one frame and another under the

effect of mechanical strains. Moreover, the segmentation of

the vessels is a highly time-consuming task if relying on user

input, but is a challenge for standard automatic methods due

to the weakness of contrast of small vessels and ambiguities

posed by crossing and branching points.

Here, we present a new algorithmic approach, allowing to

efficiently and accurately register images of vasculature sub-

ject to non-rigid deformations. Then, instead of relying on

the anatomical image we use flow information, enhanced by

a Beer-Lambert-based preprocessing, to automatically extract

physiologically realistic blood vessels along with their diam-

eter.

2. METHODS

2.1. Sequence Registration

Images were acquired at 200 Hz with a CCD, upon il-

lumination at 570nm, from the primary visual cortex of an

awake macaque who had a 1cm2 transparent cranial window

chronically implanted above the area of interest. Even though,

during the experiment, the monkey’s head is thoroughly sta-

bilized, the curvature of the cortical surface, its position with

respect to the camera and the exact morphology of the vascu-

lature change slightly under the effects of the heart-beat and

the monkey’s body movements. These movements can be as

large as a few pixels, and can be relatively fast (until hundred

of Hz). An interframe "spatial matching" step is thus required

to be able to further process each image-sequence. [5] of-
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Fig. 1. Left: Blue: SIFT points on a part of the first frame of the

sequence. Red: corresponding Delaunay triangulation. Right: Reg-

istration between two frames : a point belonging to a triangle in the

first image is registered to the point with same barycentric coordi-

nates in the corresponding triangle of the second image.Scalebar is

500μm in all figures

fers a recent survey of several image such image registration

methods.

Here, we propose a new features-based method for regis-

tering a complete sequence, based on Scale-Invariant Feature

Transform (SIFT) keypoints [6]. SIFT is a state-of-the-art fast

and robust algorithm for extracting and characterizing salient

features from an image which can deal with several computer

vision problems. For each image, the SIFT algorithm yields

a number (controlled by a threshold) of 2D points p with sub-

pixel precision, along with a descriptor vector vp in R
128 for

each point p, which represents the image around the detected

point. The main feature of the SIFT detector is that the points

and descriptors obtained are invariant with respect to scale,

rotation, and illumination changes.

Our method can be described by the following steps:

1. Features Detection: the SIFT algorithm is applied to

each image of the sequence, to detect characteristic

points along with their descriptors (fig. 1) after images

have been smoothed with a narrow Gaussian filter (∼ 2

pixels) to remove high spatial frequency components.

2. Features Matching: we use one frame (usually the first,

0) as a reference and match its SIFT keypoints to those

of other frames. Using some threshold δ, we keep from

the set of these keypoints only those p0 which match

with one and only one keypoint pi (||vp0 , vpi
||2 < δ) in

every other frame i. Notice that no spatial information

is used during this step: only the points’ descriptors are

used during the matching process, not their positions.

This potentially allows for large movements between

frames.

3. Full Image Matching: the third step is intended to ex-

tend the matching of the characteristic points to the

whole space. For this purpose, we first apply Delaunay

triangulation [7] to form a mesh M0 which vertices are

the SIFT points of the reference frame (fig. 1). Then

each triangle (p0a, p0b, p0c) of this mesh is matched to

its counterpart (pia, pib, pic) in each other image i us-

ing an affine transformation (figure 1).

2.2. Flow-based vessels extraction

2.2.1. Beer-Lambert correction

The Beer-Lambert law predicts the measured signals

as a function of the absorption of the illumination light

by the tissues. If we separate the absorption by the RBCs

from the one from vessels or other cortical tissues, we get

I ≈ I0e
−α2de−β2d′

, where I is the reflected light intensity,

I0 the incident light, α the absorption coefficient of ves-

sel, d the width of the vessel at the considered point, β the

absorption coefficient of the RBCs and d′ its width.

Thus the signal of interest - e.g. the presence of RBCs can

be extracted by applying the following filter to each point of

the sequence : d′ � −log( I
Ibase

) where Ibase = I0e
−α2d

For each point Ibase is evaluated as a robust minimal in-

tensity throughout the sequence. Such a normalization us-

ing the minimal intensity instead of average intensity [4] en-

hances the signal from RBCs motion in the vessels without

increasing the noise outside.

2.2.2. Shortest paths

Our approach is based on shortest paths methods. These

methods are widely used for segmenting vessels from anatom-

ical 2D or 3D images [8]. They rely on the fact that in many

modalities, gray level is a relevant indicator of the presence

of a vessel at any point of the image. For example, in optical

imaging data, vessels appear darker than the background. We

cast the problem of segmenting a vessel between two user-

supplied points p0 and p1 of an image I : [0, 1]2 → [0, 1],
into the minimization of the following energy:

E(C) =
∫ 1

0

f(I(C(t)))dσ(t) (1)

where C : [0, 1] → [0, 1]2 is a curve such that C(0) = p0

and C(1) = p1, f a positive monotonous mapping , and σ(t)
the Euclidean arc-length. f(I(C(t))) thus drives the curve

toward low intensity regions.

Such energy can be globally minimized in any dimen-

sion in a very efficient way by using Fast Marching Methods
(FMM)[9]. Actually, the problem boils down to finding the

shortest path between two points with respect to the metric

[f(I(.))]dσ.

2.2.3. Blood-flow based image segmentation

In this section, we propose a completely new approach to

perform a semi-automatic extraction of vessels based on the
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Fig. 2. Extraction of the space− time image. Left: neighborhood

of p in the direction θ. Right: corresponding space− time image.

flow information.

To adapt the shortest path formalism to a flow-based ex-

traction of vessels, we replace the light-intensity (gray level)

information by a value depending on the presence – or ab-

sence – of blood-flow. For a point p and an orientation θ, we

determine whether flow following the direction θ is present at

p throughout the sequence. To achieve this, we first extract

a 2-dimensional space− time image from a small neighbor-

hood of p in our sequence of frames in direction θ (Fig. 2),

yielding an image I(l, t). Using the same structure tensor for-

malism as in [4], we compute the following tensor:

T (p, θ, t) =

〈(
∂I

∂t
,
∂I

∂l

) (
∂I

∂t
,
∂I

∂l

)T
〉

Let T̄ (p, θ) be its mean over I(l, t). The ratio ρ(p, θ) between

the two eigenvalues of T̄ (p, θ) (i.e. its anisotropy) gives an

indicator of the presence of flow in that direction – the more

the tensor is anisotropic, the more likely there is significant

flow.

Again, given two points p0 and p1, we consider the

space+direction domain [0, 1]2 × [0, π) (where the direction

component is periodic). Using the FMM, it is straightforward

to find the shortest path between the sets {(p0, θ)|0 ≤ θ < π}
and {(p1, θ)|0 ≤ θ < π}with respect to a metric based on the

potential (−ρ). Keeping only the spatial component of this

path, we obtain an optimal path such that there is significant

flow information along it and for which the flow direction

changes smoothly.

2.2.4. Radius extraction

Going one step further, we now propose a method to

evaluate at the same time the radius of the segmented ves-

sel. Briefly, for a point in the space+direction domain, and

for any candidate radius r, we evaluate the presence of flow

in the θ direction on a neighborhood of radius r perpendic-

ular to the θ direction. This yields a potential ρp,θ,r in the

space+direction+radius domain [0, 1]2×[0, π)×[rmin, rmax].
The resulting 4D optimal path is projected back onto the

space+radius domain, giving the center and the radius of a

tubular structure.

Fig. 3. Automatically extracted vessels. Initial and final points are

shown with squares. Notice that only flow information (vs anatomic

information) was used to perform these segmentations.

Fig. 4. Top: ratio between frame 0 and frame 300 of a representative

sequence, on an area of interest. From left to right : raw (no regis-

tration), rigid registration, SIFT-based registration (clipping range -

i.e. gray-level intensity scale - is the same for the 3 images), SIFT-

based registration with a clipping range ten times smaller. Bottom:
|| ||2 comparison of each frame in the whole sequence to frame 0

(for the area of interest). Raw, rigid registration and SIFT-based reg-

istration are respectively represented in green, blue and red. Left:
whole sequence. Right: zoom on frames 250 to 350

Fig. 3 shows some results of vessels extracted by this

method, superimposed on the first image of the sequence.

Note how the smoothness in orientation imposed by our

method allows the extraction of the vessel, even when cross-

ings are cluttering the image.

3. RESULTS

3.1. Frame registrations: rigid vs. non-rigid

Fig. 4 compares the performance of our SIFT-based reg-

istration method with a classical rigid registration algorithm.

Notice our method correctly registers the borders of the ves-

sels.

3.2. Average flow in the vasculature

Fig. 5 shows RBCs’ speeds in three automatically seg-

mented vessels. RBCs were found to cross any given section

of the vessel one-by-one. Also, linear RBC density along the
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Fig. 5. RBCs’ speeds in three automatically segmented vessels
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Fig. 6. Comparison of the estimations of RBCs velocity changes

after rigid vs non-rigid sequence registration. (F) Vessel considered,

extracted using flow-based segmentation. (A,B) Space-time data ex-

tracted along this vessel after rigid and non-rigid registrations re-

spectively. (C,D) Corresponding estimates of RBCs velocity, using

the tensor structure information: only in the non-rigid case it is possi-

ble to estimate the velocity and then detect heart-pulsation changes.

(E) Estimation in the non-rigid case, when averaging the structure

tensor over the whole section of the vessel: only little information is

added compared to using only the middle line of the vessel (D)

vessels’axis was found to be essentially equal for all three

vessels (D1 ∼ D2 ∼ D3 ∼ 6.7 ± 1.18 mm−1). The RBC

current conservation equation V1D1 + V2D2 + V3D3 = 0 is

thus satisfied within the variability of the data (where Vi are

the RBCs’ speeds in the vessels, and Di the density of RBCs).

3.3. Variations of the flow in time

Estimation of velocity changes of the RBCs flow inside

the vessels is much sensible to the accuracy of frame regis-

tration and vessel extraction. We performed such estimations

on a trial of our monkey experiment presenting a high level

of vibrations (see [4] for methods). Fig. 6 shows that in the

rigid registration case, the data remains too much polluted by

signals originating from outside the vessel and no flow esti-

mation is possible; whereas the SIFT registration allows to

deal with these vibrations most of the time (except when they

are faster than frame acquisition rate, resulting in blurred raw

images).

4. DISCUSSION AND CONCLUSION

Using the non-rigid image registration described here, we

were able to achieve far better spatial matching between the

vasculature in different frames (Fig. 5). As a result, the blood

flow signal could be recovered in vessels that did not yield

any signal upon rigid registration. The obtained RBC flow

could also be validated for conservation in vascular branch-

ing points, the total number of RBCs flowing in and out being

found to match. The described data processing will hopefully

allow increasing the accuracy and the sensitivity of optical

imaging -based blood flow measurements, in particular with

respect to reliably mapping over large vascular networks the

small activity dependent blood flow changes elicited by neu-

ronal activation .
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